Journal of Organometallic Chemistry, 139 (1977) 305–313 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

KRISTALL- UND MOLEKÜLSTRUKTUR VON η^3 -ALLYL-TRICARBONYL-ETHYLENBIS(DIPHENYLPHOSPHIN)-VANADIUM(0), η^3 -C₃H₅V(CO)₃(Ph₂PCH₂CH₂PPh₂)

UWE FRANKE und ERWIN WEISS*

Institut für Anorganische und Angewandte Chemie der Universität Hamburg, Martin-Luther-King-Platz 6, D 2 Hamburg 13 (B.R.D.)

(Eingegangen den 18. Mai 1977)

Summary

A single crystal X-ray structure investigation of η^3 -allyltricarbonylethylenebis(diphenylphosphine)vanadium(0) has been carried out (R = 0.04, 3061 significant reflexions). The orthorhombic unit cell (space group *Pbcn*) contains 8 molecules. Considering the allyl group as a monodentate ligand, the central V atom is coordinated pseudooctahedrally with the CO groups in meridional positions. As expected the distances from V to the terminal C atoms of the allyl group are significantly greater than to the central C atom. The C and H atoms of the allyl group are not coplanar as shown by computation of leastsquares planes.

Zusammenfassung

Es wurde eine Einkristall-Röntgenstrukturuntersuchung von η^3 -Allyl-tricarbonyl-ethylenbis(diphenylphosphin)vanadium(0) durchgeführt (R = 0.04, 3061 signifikante Reflexe). Die orthorhombische Elementarzelle (Raumgruppe *Pbcn*) enthält 8 Moleküle. Bei Betrachtung der Allyl-Gruppe als einzähnigen Liganden ist das zentrale V-Atom pseudooktaedrisch koordiniert, wobei die CO-Gruppen in meridionalen Positionen angeordnet sind. Erwartungsgemäss sind die Abstände vom V-Atom zu den endständigen C-Atomen der Allyl-Gruppe deutlich grösser als zum mittleren C-Atom. Beste-Ebenen-Rechnungen zeigen, dass die C- und H-Atome der Allyl-Gruppe nicht exakt coplanar sind.

Einleitung

Kürzlich berichteten wir über Darstellung und Eigenschaften von η^3 -Allyltricarbonyl-ethylenbis(diphenylphosphin)vanadium(0)-Komplexen [1], die bei der UV-Bestrahlung von [Et₄N][V(CO)₄diphos] mit Allylhalogeniden in THF

(Fortsetzung s. S. 308)

-	
9	
EL	
¥B	
F	

Atomparameter und temperaturfaktoren von $\eta^3.c_3H_5V(CO)_3didhos$

Der anlsotrope Temperaturfaktor ist definiert durch exp $-[\beta_{11}h^2 + \beta_{22}h^2 + \beta_{3}y^{12} + 2\beta_{13}hl + 2\beta_{23}hl) \times 10^{-4}$; für die H-Atome beträgt der isotrope Tempera-turfaktor exp[$-B(\sin^2\theta/\lambda^2)$], wobei $B(\Lambda)^2$

						والمسابقة المحافظة والمتخاصة والمتخاص والمتحد والمحافية والمحافظ				
Atom	x/a	y/b	z/c	ß11	β22	β33	β12	ß13	β23	
٨	0,80198(6)	0,66052(4)	0.67912(4)	29(0)	18(0)	14(0)	0(0)	3(0)	1(0)	
P(1)	0.72249(7)	0,57404(6)	0.75274(6)	26(1)	23(0)	12(0)	() 1 1	1(0)	1(0)	
P(2)	0.73865(7)	0,56319(7)	0,63044(5)	32(1)	22(0)	12(0)	1(0)	1(0)	0)0	
(1)0	0.6328(3)	0.7509(3)	0.6924(2)	46(2)	53(2)	31(1)	22(2)	4(1)	-1(1)	
0(3)	0,9703(2)	0,5705(3)	0.6647(2)	34(2)	50(2)	37(2)	12(1)	6(1)	-3(1)	
0(3)	0,8871(3)	0,7051(3)	0.8094(2)	56(2)	51(2)	23(1)	-8(2)	(1)01	-3(1)	
C(1)	0.8735(4)	0.7793(3)	0.6776(3)	61(3)	26(2)	28(1)	-12(2)	1(2)	4(1)	
C(3)	0.8303(4)	0.7651(3)	0.6182(3)	51(3)	26(2)	26(1)	5(2)	7(2)	9(1)	
C(3)	0,8569(4)	0,7036(3)	0.6782(3)	61(3)	32(2)	23(1)	4(2)	12(2)	9(1)	
C(4)	0,6958(4)	0,7180(3)	0.6874(3)	41(2)	29(2)	19(1)	3(2)	2(1)	(1)0	
C(5)	0,0061(3)	0,6018(3)	0.6707(3)	37(2)	28(2)	18(1)	2(2)	6(1)		
C(0)	0,8524(3)	0,6894(3)	0.7616(3)	34(2)	26(2)	22(1)	-2(1)	2(1)	0(1)	
C(1)	0,6693(3)	0,4030(3)	0.6470(3)	42(2)	29(2)	10(1)		0(1)	-1(1)	
C(8)	0.6331(3)	0.5330(3)	0.7074(3)	20(2)	37(2)	16(1)	-6(1)	1(1)	2(1)	
(6) (1)	0.6740(3)	0,6153(3)	0.8254(2)	33(2)	24(1)	13(1)	-2(1)	4(1)	3(1)	
C(10)	0.5895(3)	0,6364(3)	0.8281(3)	33(2)	40(2)	19(1)	-2(1)	3(1)	-6(1)	
C(11)	0,5547(4)	0,6651(4)	0,8860(3)	41(2)	42(2)	28(2)	-6(2)	12(2)	(I) 6-	
C(13)	0.6044(3)	0,6744(3)	0.9399(3)	58(3)	32(2)	23(1)	-7(2)	18(2)	(1)9-	
C(13)	0.6887(4)	0,6549(4)	0.9376(3)	67(3)	37(2)	11(1)	-7(2)	(1)[-		
C(14)	0.7239(3)	0,6253(3)	0.8807(3)	39(2)	37(2)	15(1)	3(1)	-2(1)	0(1)	

-1(1) 10(1) 12(1) 6(1)	11(1) 11(1) 11(1) 10(2)	-14(2) -6(1) B 1.6(1.0) 2.7(1.0) 1.1(1.0)
0(1) 0(1) 1(2) 13(2) 4(2)		12(2) 7(2) 2/C 0.650(2) 0.720(3) 0.720(3)
0(1) 3(2) 6(2) 17(2) 21(2)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-10(2) -4(2) y/b 0.473(3) 0.448(3) 0.597(3) 0.501(3)
14(1) 28(1) 33(2) 30(2)	28(1) 16(1) 20(1) 20(1) 22(1) 18(1)	2.(2) 18(1) <i>x/a</i> 0.624(3) 0.706(3) 0.599(3) 0.599(3)
23(1) 37(2) 32(2) 31(2) 58(3)	22(2) 22(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2	47(3) 38(2) Atom H(6) H(7) H(8) H(9)
37(2) 42(2) 83(3) 60(3)	37(2) 33(2) 33(2) 33(2) 33(2) 33(2) 44(2) 56(3) 44(2) 44(2) 44(2) 33(3) 33(3) 33(3) 33(3) 33(3) 34(3)	44(3) 40(2) <i>B</i> 2.4(1,0) 5.4(1,0) 5.4(1,0) 2.8(1,1) 4.8(1,0)
0.7865(2) 0.8147(3) 0.8395(4) 0.8377(4) 0.8377(4)	0.78572(3) 0.5372(3) 0.4582(3) 0.4582(3) 0.4580(3) 0.4586(3) 0.4728(3) 0.4728(3) 0.5538(3) 0.5538(3) 0.5637(4) 0.5637(4) 0.5637(4)	0.4961(3) 0.4970(3) 2/c 0.602(3) 0.516(2) 0.576(2) 0.682(3)
0.4864(3) 0.4273(3) 0.3615(4) 0.3528(3) 0.4112(4)	0.4776(4) 0.5941(3) 0.5941(3) 0.5941(4) 0.6940(4) 0.6128(3) 0.4371(3) 0.4371(3) 0.4472(4)	0.4050(4) 0.6134(3) <i>y/b</i> 0.793(3) 0.824(3) 0.684(3) 0.684(3)
0.7717(3) 0.7223(4) 0.7610(4) 0.8473(5) 0.8473(5)	0,8586(4) 0,66886(4) 0,66886(3) 0,5748(4) 0,5617(4) 0,6008(4) 0,6136(4) 0,8123(3) 0,9113(4) 0,9113(4) 0,9135(4)	0.8364(3) 0.8364(3) x/a 0.773(3) 0.856(3) 0.918(3) 0.943(3)
C(15) C(17) C(17) C(18)	C C C C C C C C C C C C C C C C C C C	C(32) Atom H(2) H(2) H(3) H(4)

307

.

•

Fig. 1. η^3 -C₃H₅V(CO)₃diphos.

unter CO-Entbindung entstehen (diphos = Ethylenbis(diphenylphosphin)).

Am η^3 -C₃H₅V(CO)₄PPh₃ wurde bereits die erste Röntgenstrukturuntersuchung eines Allyl-Vanadium-Komplexes durchgeführt [2]. In Fortführung dieser Arbeit beschreiben wir nun die Ergebnisse einer Strukturuntersuchung von η^3 -C₃H₅V-(CO)₃diphos (Fig. 1).

Röntgenographische Untersuchungen

 η^3 -C₃H₅V(CO)₃diphos kristallisiert aus einer gesättigten Aceton/Hexan-Lsg. beim Abkühlen in quaderförmigen, dunkelroten Kristallen. Drehkristall- und Weissenberg-Aufnahmen lieferten vorläufige Zellparameter und zeigten, dass die Verbindung orthorhombisch kristallisiert (Raumgruppe *Pbcn*, Z = 8, ρ (röntg.) = 1.36 g cm⁻³).

Die mit Hilfe einer Vierkreis-Einkristalldiffraktometers verfeinerten Zellparameter sind: a = 1580.5(2), b = 1711.2(2), c = 2051.4(2) pm; $V = 5548 \times 10^6$ pm³.

Die Vermessung ($\theta/2\theta$ -Scan-Technik, Mo-Strahlung) eines Kristalls ($0.1 \times 0.2 \times 0.2 \text{ mm}$) bis zu einem Beugungswinkel von $\theta = 25^{\circ}$ ergab 4899 symmetrieunabhängige Reflexe. Davon waren 3061 signifikant. Mit Hilfe des Direktmethodenprogramms MULTAN [3] sowie durch dreidimensionale Fouriersynthesen konnten alle Atomlagen (ausser H-Atome) bestimmt werden. LSQ-Rechnungen [4] mit anisotropen Temperaturfaktoren ergaben einen *R*-Wert von 0.056. Differenzfouriersynthesen lieferten die H-Atomlagen, welche isotrop verfeinert wurden. Weitere LSQ-Rechnungen führten zum abschliessenden *R*-Wert von 0.04.

Beschreibung der Molekülstruktur

Die Atomkoordinaten und Temperaturfaktoren sind in Tab. 1, die Bindungsabstände und -winkel in Tab. 2 zusammengestellt. Fig. 2 zeigt die Molekülstruktur, Fig. 3 die Bindungslängen und Fig. 4 eine perspektivische Darstellung der Elementarzelle.

Bei Betrachtung der Allyl-Gruppe als einzähnigen Liganden ist das Vanadium pseudooktaedrisch koordiniert. Die Abweichungen vom idealen Oktaederwinkel betragen bis zu 13° [P(1)—V—P(2) 76.98(5)°]. Die drei CO-Gruppen sind meridional angeordnet, ihre C-Atome bilden mit dem V-Atom eine Ebene mit nur sehr geringen Abweichungen von ± 0.5 pm. P(2) und die drei CO-Gruppen liegen

> 는 가지 생각되는 것 것이 가지 않는 것이 가지 않는 것이 가지 않는 것이 있는 것이다. 이 같은 사람은 것 같은 것이 같은 것이 있는 것이 같이 있는 것이 같은 것이 같이 많이 있는 것이다.

AUSGEWÄHLTE BINDUNGSABSTÄNDE UND BINDUNGSWINKEL MIT STANDARDABWEICHUNGEN

Atome	Abstand (pm)	Atome	Abstand (pm)	
(a) Vanadium-Ph	osphor-Abstände	· · · ·		
VP(1)	246.0(2)	V-P(2)	248.7(2)	
· · · · · · · · · · · · · · · · · · ·				and the second
(b) Phosphor—Ko	hlenstoff-Abstände	and the second second	1	
P(1)C(8)	183.2(5)	P(2)C(7)	184.6(6)	
P(1)-C(9)	181.9(5)	P(2)-C(21)	183.6(5)	· · · · · · · · · · · · · · · · · · ·
P(1)-C(15)	182.6(5)	P(2)-C(27)	182.5(5)	
(c) Vanadium-Ca	rbonyl-System			
V-C(4)	195,2(6)	C(4) = O(1)	115.0(7)	
VC(5)	193.6(5)	C(5)O(2)	115.4(7)	
V—C(6)	193.5(6)	C(6)-O(3)	115.5(7)	
(d) Vanadium—Al	llyl-Abstände	VH(2)	301(6)	
V-C(1)	232.6(6)	V-H(3)	299(5)	
V-C(2)	222 8(6)	V = H(A)	281(5)	
V-C(3)	236.4(7)	V—H(5)	285(5)	
(e) Abstande im A	Allyl-Liganden	C(1)-H(5)	- 104(5)	
C(1)-C(2)	141.8(9)	C(2) - H(1)	107(5)	
C(2)-C(3)	139.9(8)	C(3) - H(2)	102(5)	
C(1)-H(3)	101(5)	C(3)—H(4)	103(5)	
(f) Sonstige Absta	inde			

() oonange moonant		
C(7)-C(8)	152.0	D(8)
C(Ph)—C(Ph)	138.2	2 (Mittelwert aller Phenylringe)
C(Ph)—H	97	(Mittelwert aller Phenylringe)
	· •	

Atome	Winkel in ^o	Atome	Winkel in ^o	
(a) Allyl—System		H(1)-C(2)-C(1)	126(3)	
C(1)-C(2)-C(3)	119.3(6)	H(1)-C(2)-C(3)	114(3)	
H(3)—C(1)—H(5)	115(4)	H(2)-C(3)-H(4)	113(5)	
H(3)-C(1)-C(2)	120(3)	H(2)-C(3)-C(2)	116(3)	
H(5)-C(1)-C(2)	119(3)	H(4)-C(3)-C(2)	125(3)	
(b) Vanadium—Allyl-S	System	V-C(1)-C(2)	68.1(4)	
C(1) - V - C(2)	36.2(2)	V-C(2)-C(1)	75.7(4)	
C(1)-V-C(3)	62.4(2)	VC(2)C(3)	77.7(4)	
C(2)-V-C(3)	35.3(2)	V-C(3)-C(2)	67.0(4)	
(c) Vanaaium-Carbon	' yl-System			
C(4)-V-C(5)	179.0(2)	VC(4)O(1)	179.1(5)	
C(4)-C-C(6)	98.6(2)	VC(5)O(2)	176.3(5)	
C(5)VC(6)	82.0(2)	VC(6)O(3)	175.9(5)	
(d) diphos-System		C(8)-P(1)-C(9)	103.9(2)	
P(1)-V-P(2)	76.98(5)	C(8)-P(1)-C(15)	119.4(2)	
V-P(1)-C(8)	108.2(2)	C(9)-P(1)-C(15)	110.8(2)	
V-P(1)-C(9)	119.0(2)	C(7)-P(2)-C(21)	100.5(2)	
VP(1)C(15)	120.6(2)	C(7)-P(2)-C(27)	102.8(2)	
VP(2)C(7)	111.6(2)	C(21)P(2)C(27)	102.0(2)	
V-P(2)-C(21)	120.3(2)	P(1)-C(8)-C(7)	107.0(4)	
VP(2)C(27)	116.5(2)	P(2)-C(7)-C(8)	109.5(4)	
(e) Sonstige Winkel				
P(1)-V-C(5)	100.2(2)	P(2)VC(4)	92.6(2)	
P(2)VC(5)	86.5(2)	P(1)-VC(6)	80.1(2)	÷
P(2)VC(4)	79.1(2)	P(2)-VC(6)	152.0(2)	

Fig. 2. Molekülstruktur von η^3 -C₃H₅V(CO)₃diphos.

dagegen nicht in einer Ebene (Abweichung ±26 pm).

Erwartungsgemäss betragen die gemittelten Bindungslängen V–C(CO) 194.1 pm und die C–O-Abstände 115.3 pm. Bedingt durch die Zweitsubstitution sind letztere etwas länger als beim monosubstituierten η^3 -C₃H₅V(CO)₄PPh₃ (Mittelwert 113.6 pm) [2].

Die Winkel zwischen Vanadium und den C-Atomen der CO-Gruppen betragen 179.0(2), 98.6(2) und 82.0(2)°.

Im diphos-Liganden variieren die P-C-Abstände nur geringfügig (mittlerer Abstand 183.1 pm). Die sp^3 -hybridisierten P-Atome sind aus sterischen Gründen nicht exakt tetraedrisch koordiniert [102.0(2)-120.6(2)°].

Im Rahmen der Fehlergrenzen sind die Brücken-C-Atome tetraedrisch von P, C und jeweils zwei H-Atomen umgeben (Mittelwert: 110.0°).

Der Abstand vom Vanadium zu den endständigen C-Atomen der Allyl-Gruppe ist mit 232.6(6) und 236.4(7) pm deutlich länger als zum mittleren C-Atom 222.8(6) pm. Diese Unsymmetrie der Bindung des Allyl-Liganden an das Metall ist charakteristisch für η^3 -Allyl-Komplexe. Im Liganden betragen die

Fig. 3. Bindungsabstände (pm) von η^3 -C₃H₅(CO)₃diphos.

C-C-Abstände 141.8(9) und 139.9(8) pm, die C-H-Abstände 101(5) bis 107(5) pm (mittlerer Abstand 103 pm). Der C-C-Winkel [119.3(6)°] entspricht ebenso einer sp^2 -Hybridisierung wie die C-C-H- und H-C-H-Winkel, für die Werte von 113(5) bis 125(3)° gefunden werden (mittlerer Winkel: 119°). Jedoch ist die Allyl-Gruppe mit ihren drei C- und fünf H-Atomen nicht exakt planar.

Die Abweichungen von der besten Ebene betragen bis zu 13.6 pm. Während H(1) leicht zum Vanadium hin geneigt ist, liegen H(2) und H(3) in der durch C(1), C(2) und C(3) aufgespannten Ebene. H(4) und H(5) stehen um 44 pm oberhalb dieser Ebene, vom Vanadium weggeneigt. Das Abweichen von einer exakten sp^2 -Hybridisierung zeigt sich auch daran, dass die Ebenen H(3)-C(1)-

312

Fig. 4. Perspektivische Darstellung der Elementarzelle von η^3 -C₃H₅(CO)₃diphos.

H(5) und H(2)-C(3)-H(4) mit der C(1)-C(2)-C(3)-Ebene Winkel von 26° bzw. 27° bilden.

Der Winkel zwischen der Allyl-Ebene (aufgespannt durch C(1), C(2) und C(3)) und der durch V, C(1) und C(3) aufgespannten Ebene, beträgt 81.2°. In vergleichbaren Allyl-Komplexen variiert dieser Winkel von 70 bis 80° [2,5,6]. Der Winkel zwischen der C(1)—C(2)—C(3)-Ebene und der durch V und die drei CO-Gruppen gebildeten Ebene ist mit 15.1° nur geringfügig grösser als im η^3 -C₃H₅V-(CO)₄P(C₆H₅)₃ (14.2°) und liegt im Rahmen der bei anderen η^3 -Allyl-Verbindungen gefundene Werte [7,8].

Insgesamt sind die Abstände vom Vanadium zu den anti-Protonen H(4) und H(5) (mittlerer Abstand: 283(5) pm) etwas kürzer als zu den syn-Protonen H(2) und H(3) (mittlerer Abstand: 300(6)). Unter dem Vorbehalt, dass sich die hier am Kristall gefundenen Ergebnisse mit dem Komplex in Lösung vergleichen lassen, wird damit die im ¹H-NMR-Spektrum gefundene geringere chemische Verschiebung für die *anti*-Protonen (δ 1.93 ppm) im Vergleich zu den syn-Protonen (δ 2.85 ppm) bestätigt [1]. Die näher am Vanadium befindlichen *anti*-Protonen H(4) und H(5) werden durch den Einfluss des Metallatoms besser abgeschrimt als die syn-Protonen H(2) und H(3).

Dank

Der Deutschen Forschungsgemeinschaft sei für die Bereitstellung eines rechnergesteurten Einkristall-Diffraktometers und dem Fonds der Chemischen Industrie für Sachmittel gedankt. Den Herren Dr. K. Hoffmann, Ka. Hoffmann, Dr. J. Kopf und J. Schulze (Hamburg) sowie Herrn Prof. Dr. G. Huttner (Konstanz) danken wir für die Bereitstellung von Rechenprogrammen.

Literatur

1 U. Franke und E. Weiss, J. Organometal. Chem., 121 (1976) 355.

2 M. Schneider und E. Weiss, J. Organometal. Chem., 121 (1976) 189.

3 MULTAN 74 Modifiziertes Programmsystem nach G. Germain, P. Main und M.M. Woolfson, Acta Crystallogr. A, 27 (1971) 368 von P. Main, M.M. Woolfson und L. Lessinger, University of York, England and G. Germain, J.-P. Declerq, Université de Louvain, Belgien.

- 4 LSQ-Programm ORXFLS von W.R. Busing, K.O. Martin, H.A. Levy, J.A. Ibers, R.D. Ellison, C.K. Johnson, W.A. Thiessen und W.C. Hamilton, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA, 1971.
- 5 H.L. Clarke, J. Organometal. Chem., 80 (1974) 369.
- 6 M. McParthin and R. Mason, Chem. Commun., (1967) 16.
- 7 R. Uttech und H. Dietrich, Z. Krist., 122 (1965) 60.
- 8 R. Seip, Acta Chem. Scand., 26 (1972) 1966.